If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+51X-540=0
a = 1; b = 51; c = -540;
Δ = b2-4ac
Δ = 512-4·1·(-540)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-69}{2*1}=\frac{-120}{2} =-60 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+69}{2*1}=\frac{18}{2} =9 $
| X^2-51x+540=0 | | 2(2-5x)=6 | | f(21)-12=f(15)-3 | | 8x+33=15x-37 | | f(21)=12 | | 5x-3+3x=4x+33 | | -x+6x-8=2x+7-x | | 4500(1+0,06x)=6000 | | -x×(-x)+6x-8=2x+7 | | -x+6x-8=2x+7 | | 9-x/9=-10 | | X+4+3x+4+2x-1=22 | | x^2+80x-50=0 | | 0=5x^2-3x+100 | | 1+0.1x=1.1^x | | 7k^2+14k=0 | | x=9+1.5x | | 5x-2x-16=0 | | 2x/(5x/60)=24 | | (5^x+1)(7^x)=3^2x+1 | | 43.02=x+(x*0.78) | | 43,02=x+(x•0,78) | | 43,02=x+(x•0.78) | | 3/2=6g-5 | | 43.02=x+(x•0.78) | | -26=22(4d-5) | | {(5x+5)×(2x+5)}-(5x×2x)=305 | | 6x+9=26x-91 | | ((t+4)/(t^2-4))((4t-8)/(2t+8))=0 | | (5x-7)/3x=2 | | 11/13=x/12 | | (24y-18/2y)+(5/y)=13 |